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Abstract
One third of a monolayer of Sn adsorbed on Ge(111) undergoes a broad
phase transition upon cooling from a (

√
3 × √

3)R30◦ normal phase at room
temperature to a (3 × 3) phase at low temperatures. Since band-structure
calculations for the ideal (

√
3 × √

3)R30◦ phase show no Fermi-surface
nesting, the underlying mechanism for this transition has been a subject of much
debate. Evidently, defects formed by Ge substitution for Sn in the adlayer, at
a concentration of just a few percent, play a key role in this complex phase
transition. Surface areas near these defects are pinned to form (3 × 3) patches
above the transition temperature. Angle-resolved photoemission is employed
to examine the temperature-dependent band structure, and the results show an
extended gap forming in k-space as a result of band splitting at low temperatures.
On account of the fact that the room temperature phase is actually a mixture of
(
√

3 × √
3)R30◦ areas and defect-pinned (3 × 3) areas, the band structure for

the pure (
√

3 × √
3)R30◦ phase is extracted by a difference-spectrum method.

The results are in excellent agreement with band calculations. The mechanism
for the (3 × 3) transition is discussed in terms of a response function and
a tight-binding cluster calculation. A narrow bandwidth and a small group
velocity near the Fermi surface render the system highly sensitive to surface
perturbations, and formation of the (3 × 3) phase is shown to involve a Peierls-
like lattice distortion mediated by defect doping. Included in the discussion,
where appropriate, are dynamic effects and many-body effects that have been
previously proposed as possible mechanisms for the phase transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The adsorbate system of 1/3 ML (monolayer) of Sn on Ge(111) has attracted much interest
because it exhibits a rather unusual phase transition [1–6]. Diffraction from this surface shows
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a (
√

3 × √
3)R30◦ reconstruction at room temperature. As the sample temperature is lowered

below ∼210 K, this normal phase transforms gradually and becomes a fully developed (3 × 3)
phase below ∼100 K, as shown by both low-energy electron diffraction and scanning tunnelling
microscopy (STM). This was originally attributed to a charge-density-wave (CDW) transition,
and the usual picture of electron–phonon coupling involving Fermi-surface nesting was invoked
as the mechanism for the transition. However, later experimental and theoretical results have
cast doubt on this simple picture, and other interpretations have been proposed. The subject
remains controversial to date, and it is perhaps surprising that for such a seemingly simple
system, modern techniques have not yet provided a complete understanding and agreement on
the structure and properties.

Looking closely, the system is actually not quite that simple. It exhibits the
same characteristics as the so-called ‘complex’ systems [7], as typified by many high-
temperature superconductors, colossal-magnetoresistive materials, ferroelectrics, etc; namely,
inhomogeneities and phase mixtures are intrinsic and important features of the phase
transition [6, 8]. Many surface science techniques yield spatially averaged information, and
therefore the results can be easily misinterpreted if spatial variations are neglected. The
dynamic behaviour of the system also poses an interesting question. In addition to the usual
phonons corresponding to harmonic lattice vibrations, the system could have more complicated
potential curves or significant polaronic coupling giving rise to ‘fluctuations’ or time-dependent
spatial features that can affect various measurements. Furthermore, one can imagine that many-
body effects including magnetic ground states may be operative here. The truth is that many
of the mechanisms proposed for this system regarding the ‘unconventional behaviour’ are
extremely difficult to verify or disprove beyond doubt, and therefore, the controversy could
and is likely to continue.

Such problems are well known for the complex oxides. Sn on Ge, being a binary system
and easily accessible with surface science tools, is still much simpler to analyse than the
complex oxides. A detailed examination of this ‘model complex system’ can be extremely
valuable for a basic understanding of the physics of complex systems in general. A binary
system almost always exhibits some degree of intermixing. This is especially so at surfaces. Sn
on Ge is no exception. While Sn and Ge are nominally mutually insoluble at room temperature,
STM has shown that the Sn adlayer contains a few percent of Ge admixture [1–4,6]. For most
adsorbate systems, such a small amount of admixture does not yield any noticeable effects.
The Sn/Ge case is different. The ‘Ge defects’ can act as pinning centres, resulting in a mixed
phase. Furthermore, there appears yet another subtle transition at low temperatures involving
partial ordering of the Ge defects [6]. Similar chemical disorder or order effects have been
seen in many complex oxides.

This paper is a review of recent results with a focus on the temperature-dependent
electronic structure as measured by means of angle-resolved photoemission. Clues regarding
the mechanism of a phase transition are often found in the band structure near the Fermi level
(assuming that band structure remains a valid and useful concept for this system). Of primary
interest here is the Fermi surface and its changes as a function of temperature. An issue of
importance is whether or not the system exhibits a gap, as gap opening is often associated with
CDW or other types of phase transitions. As mentioned above, a complicating factor is that the
system may be inhomogeneous and involve a phase mixture, and it is important to recognize this
in data analysis. Early studies of this system have yielded results that are mutually inconsistent,
causing much confusion and speculations. However, more recent data from different groups
are converging, and therefore sample reproducibility is no longer an issue.

We will show that a model involving the usual band structure and electron–phonon
coupling can satisfactorily explain the photoemission results, provided that the presence of
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Figure 1. Schematic structural models for the (
√

3 × √
3)R30◦ and (3 × 3) phases of 1/3 ML of

Sn on Ge(111). Sn atoms with positive and negative excess charges are labelled with a plus (+)
and a minus (−) sign, respectively. The unit cells are shown.

the Ge defects, the resulting phase mixture, a narrow bandwidth near the Fermi level, and
finite-temperature effects are taken into account [8]. This model has the appeal of simplicity,
and is based on familiar ideas. There is no need to invoke dynamic effects or exotic many-body
interactions, although these could still be important and may have ramifications in some other
ways. These possibilities will be discussed. Other experimental results including those from
core-level photoemission, photoelectron diffraction, and x-ray diffraction are reviewed, as the
information is relevant to the static and dynamic structure of the system.

2. The problem

STM reveals that the surface is mostly (
√

3 × √
3)R30◦ reconstructed at room temperature.

However, near the Ge defects, locally (3 × 3)-like patches can be found. These (3 × 3)
areas grow as the sample temperature is lowered [1–4, 6]. Ignoring these defects for now,
the (

√
3 × √

3)R30◦ reconstruction at room temperature is believed to involve Sn atoms
adsorbed in threefold T4 sites on a bulk-truncated Si(111) surface. A model of the atomic
structure is shown in figure 1. Each (

√
3 × √

3)R30◦ unit cell contains one Sn adatom,
and all Sn adatoms are equivalent. Although essentially all available experimental results
support this T4 model, there is a notable exception. A recent x-ray standing-wave analysis
based on geometrical triangulation has indicated that the results are simply incompatible with
the T4 model [9]. Rather, the Sn atoms appear to be located in T1 sites that are directly
above the top-layer Ge atoms. This structure would seem extremely unlikely on the basis
of either chemical intuition or total-energy consideration, but the issue has not been resolved
yet. We will assume in this paper that the T4 model stands. The threefold bonding for
each Sn atom leaves an electron in a dangling bond, giving rise to a half-filled surface band.
Figure 2 shows the results of a recent density functional band-structure calculation based on
the local density approximation (LDA) [10]. The band has its maximum energy near the
zone centre and disperses downward toward the zone boundary. The bandwidth is fairly
narrow, suggesting that electron correlation may be important. A Van Hove singularity at M
lies fairly close to the Fermi level, which constrains the group velocity nearby to a relatively
low value.
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Figure 2. Calculated band structures of the (
√

3 × √
3)R30◦ phase and the Fermi surface. The

two hexagons represent the (
√

3 × √
3)R30◦ and (3 × 3) BZ boundaries, and the high-symmetry

points are labelled.

At low temperatures, the surface becomes (3 × 3). Figure 1 shows the atomic structure
based on STM and other experimental evidence [1–6]. The unit cell becomes three times as
large, and each unit cell now contains three Sn atoms. Two of them move downward and
acquire a positive charge (labelled by a plus sign), and one moves upward and acquires a
negative charge (labelled by a minus sign). The charge transfer results in a CDW, and the
surface becomes corrugated. The charge transfer from the original, nominally neutral Sn
adatoms creates contrast in STM images depending on the bias polarity. We shall refer to
this transition as a CDW transition simply because of the charge transfer, although this is not
necessarily a universal definition.

Also shown in figure 2 are the first Brillouin zones (BZ) for the (
√

3 × √
3)R30◦ and

(3 × 3) surfaces and the calculated Fermi surface of the (
√

3 × √
3)R30◦ phase based on the

LDA. In keeping with the usual language, we use the term Fermi surface, even though it is
really a Fermi contour. The Fermi surface is hole-like, meaning that the states within are
unoccupied. The Fermi surface does not contact the (3 × 3) BZ boundary, although it comes
close along the sides of the hexagon. If the Fermi surface actually contacted the (3 × 3) BZ,
such nesting could result in a (3 × 3) lattice distortion via electron–phonon coupling as in
a Peierls transition. Without Fermi surface nesting and its associated lowering in electronic
energy, it is unclear why the surface would make a transition into a (3 × 3) configuration.

This question has prompted many proposals for alternative interpretations. An early model
involves a rehybridization mechanism [11]. The assumption is that the surface bandwidth is
large enough to overlap the bulk band structure in the Ge substrate. Hybridization of the
surface band with the bulk bands allows charge transfer and thus the Fermi surface becomes
adjustable and can be made to mesh with the (3×3) BZ. Another model invoked strong electron
correlation as the mechanism [12]. In an angle-resolved photoemission study, a dispersive peak
in the normal phase was observed to transform into a nondispersive peak in the CDW phase
accompanied by a depletion of the density of states near the Fermi level. The results were
attributed to a metal–insulator transition caused by strong electron correlation. However, we
now know that the bands remain dispersive in the low-temperature phase, and thus the basic
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premise of this model appears to be unfounded. Yet another model suggests that the phase
transition is an order–disorder transition [13]. The motivation for this model is the observed
complexity of the photoemission spectra of the (

√
3 × √

3)R30◦ phase. There are more peaks
than can be explained by the band structure shown in figure 2. Furthermore, results from
the (

√
3 × √

3)R30◦ and (3 × 3) phases are fairly similar. Thus, the argument goes that the
(
√

3 × √
3)R30◦ phase is just a disordered phase of (3 × 3). That is, the spectra should look

similar, except for some disorder-induced broadening in the high-temperature phase. A closely
related model, which has received much attention, is the dynamic fluctuation model [14–17].
The idea is similar, except that the disorder specifically involves time fluctuation. That is, the
(
√

3 × √
3)R30◦ phase at any given moment is actually (3 × 3), but due to rapid fluctuation

and time averaging, STM viewing of the surface gives the impression of a (
√

3 × √
3)R30◦

reconstruction with all Sn atoms apparently the same. Photoemission, on the other hand, is a
rapid process and probes the instantaneous structure. The results should reflect the underlying
(3 × 3) structure, but the spectral features might be broadened by the fluctuation. Yet other
possibilities exist, including magnetic ground states, as suggested by theoretical many-body
calculations [10,18]. These calculations are not fully self-consistent or ab initio, and therefore
it is hard to say for sure that the predictions can be compared with the experiment.

Related to the debate regarding the mechanism for the phase transition is the question of
whether the (3 × 3) surface is metallic, semiconducting, or insulating with a correlation gap.
Our own photoemission data, to be discussed below, agree well with the more recent data from
other groups. The analysis and interpretation are, however, very different. The main idea is
based on a Peierls transition involving pseudo-Fermi-surface nesting caused by defect doping.

3. Angle-resolved photoemission

Our photoemission measurements were performed at the Synchrotron Radiation Center in
Stoughton, Wisconsin. All spectra shown were taken with a photon energy of 10 eV. Figure 3
shows a comparison between spectra taken at 80 and 300 K at several points in k-space. The
bottom set of spectra, taken at normal emission (the� point in k-space), are nearly identical for
the two phases. The other three sets of spectra were taken with polar emission angles of 17◦,
22◦, and 26◦ along the �–K′–M azimuth (see figure 2), and correspond to K′, midway between
K′ and M′, and M′ on the (3 × 3) BZ boundary, respectively. The results are representative
of what happens around the (3 × 3) BZ boundary—a broad peak with a somewhat strange
lineshape near the Fermi level at room temperature is replaced by a sharper peak at 80 K,
and simultaneously a well developed Fermi edge is replaced by an apparent gap at 80 K. This
apparent gap opening was the motivation for the model based on strong electron correlation
mentioned earlier [12].

The set of spectra in figure 3 might give the impression that the peaks are dispersionless.
A more extensive set shows that this is not the case. A full set of spectra, taken along the
�–M and �–K azimuths at 1◦ polar angle increments starting from the bottom spectra at
normal emission, is shown in figure 4. The peaks are clearly dispersive, suggesting that a
band-structure description is valid, and the system does not look like a Mott insulator. It just
so happens that near the (3 × 3) BZ boundary, the peaks appear to be stationary partly due to
a low dispersion.

The additional data along �–M again show that the leading peak at 300 K is much wider
than that at 80 K, and the lineshape suggests that the peak is likely composed of unresolved
components. The data along the �–K azimuth at 80 K show three dispersive peaks. The two
near the Fermi level are derived from the Sn dangling bonds, and one of them appears to cross the
Fermi level, in agreement with [13]. About midway between M′ and K, the valley between the
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Figure 3. Comparison of photoemission spectra taken at 80 and 300 K for polar emission angles
of 0◦, 17◦, 22◦, and 26◦ along the �–M azimuth. They correspond to �, K′ midway between K′
and M′/M, and M′/M in the BZ.

two peaks at 80 K becomes filled in to form a broad feature at 300 K. A careful analysis shows
that this lineshape cannot be accounted for by broadening of the 80 K spectra. Rather, the results
can be well represented by the addition of a new peak located between the two original peaks.

On the basis of the band structure for the (
√

3 × √
3)R30◦ phase shown in figure 2,

one would expect there to be no photoemission peak for small polar emission angles at room
temperature because the band is above the Fermi level and unoccupied near the zone centre. As
the polar emission angle increases, the photoelectron momentum in the surface plane increases
correspondingly, and a single peak should appear beyond the Fermi wave vector and disperse
toward higher binding energies. The experimental finding differs from the prediction in that
up to three peaks appear. There are at least two possible interpretations for the multiple peaks.
Our own interpretation is that the surface at 300 K is actually a mixture of the (

√
3 × √

3)R30◦

and the (3×3) phases due to defect pinning according to STM observations [8]. A single peak
is expected for the pure (

√
3 × √

3)R30◦ phase, which should split into two for the (3 × 3)
phase. Thus, a total of three peaks can be expected for the mixed phase at 300 K. At 80 K,
the system is in the (3 × 3) phase. The intensity of the (

√
3 × √

3)R30◦ peak vanishes, and
the spectra become simpler as seen in the experiment. An alternative interpretation, based on
the dynamic fluctuation model or order–disorder transition, is that the 300 K spectra are just a
broadened version of the corresponding 80 K spectra, because the surfaces are essentially the
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Figure 4. Photoemission spectra taken at 80 and 300 K along the �–K and �–M azimuths. In
each set, the spectra are taken with a 1◦ increment in polar angle starting from the bottom spectrum
taken at normal emission. The approximate locations in k-space are indicated for features near the
Fermi level.

same as far as photoemission is concerned [13, 14]. However, as mentioned above, a detailed
fit of the data shows that a simple broadening does not quite explain the differences between
the 300 and 80 K data.

To further develop our mixed-phase interpretation, we show in figure 5 difference spectra
along the two azimuths obtained by subtracting the 80 K data from the 300 K data, with
each pair of spectra normalized to the same integrated intensity between 0 and 4 eV binding
energy. The phase transition causes a transfer of spectral weight among the different peaks.
As expected, the main feature of the difference spectra along each direction is a prominent
peak near the Fermi level. This should correspond to the (

√
3 × √

3)R30◦ peak based on the
band structure shown in figure 2. Some weak negative features are also expected and observed
in the difference spectra because of the overall normalization, spectral weight transfer, over-
subtraction at the (3 × 3) peak positions, and possibly background effects. These negative
features are ignored in our analysis. The solid curves through the data points are best fits
assuming a Lorentzian peak with constant width multiplied by the Fermi–Dirac function.
A constant peak width is compatible with the notion that the width is dominated by defect
scattering. While the peak is below the Fermi level, its intensity remains fairly constant from
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Figure 5. Difference spectra along the �–K and �–M azimuths obtained by subtracting the 80 K
spectra from the 300 K spectra. The curves through the data points are best fits, and the dashed
curves are dispersion curves based on a band-structure calculation.

the fit. Thus, it is reasonable to extend the analysis over a limited range as the peak moves
above the Fermi level, leaving only a tail in the spectra. The peak positions deduced from
the fit are shown as circles in figure 5, and the peak intensities vary by less than 10% near
and above the Fermi level. The dashed curves indicate the expected peak dispersions for the
pure (

√
3 × √

3)R30◦ phase based on the LDA calculation shown in figure 2. They are in
good agreement with the experiment. This good agreement is strong evidence supporting the
mixed-phase interpretation.

An alternative approach of analysis is to fit the original spectra with a set of peaks.
However, the peaks in figure 4 are not well resolved, and numerous assumptions must be made
with many fitting parameters. This is less convincing, in our opinion. Taking the difference
spectra, by contrast, is a straightforward procedure with few assumptions. If the dynamic
fluctuation model were correct, which argues that the two sets of spectra at low temperature and
room temperature are essentially the same except for peak broadening, the difference spectra
would not yield a single dominant peak. Instead, there would be weak negative features at the
peak positions surrounded by slightly positive wings or background.
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3)R30◦ phase (lower panel).

The lower panel of figure 6 shows the band dispersion derived from the peaks in the
difference spectra (circles) and the LDA band (curve). Again, the agreement is quite good,
lending strong support to our interpretation. As noted above, the Fermi surface does not mesh
with the (3 × 3) BZ, yet the 300 K spectra in figure 4 indicate a Fermi edge all around the
(3 × 3) zone boundary. This region of ‘extended Fermi edge’ is indicated in the lower panel
of figure 6. In this region, the band dispersion lies within just several tens of meV from the
Fermi level due to a relatively low group velocity. This low dispersion, the finite peak width
(probably dominated by defect scattering), and thermal broadening (kBT = 26 meV at room
temperature) conspire to give rise to the extended Fermi edge.

The circles in the upper panel of figure 6 show the measured band dispersions for
the (3 × 3) phase. The solid curves are theoretical results from an LDA calculation with
electron correlation (on-site Coulomb interaction) included within a generalized Hubbard
model [19–21]. The agreement between experiment and this LDA Hubbard calculation is
quite good. Between M′ and �′, the single band for the (

√
3 × √

3)R30◦ phase (lower panel)
is split into three bands in the (3 × 3) phase. The lower two bands are observed by means of
photoemission, while the highest band is unoccupied and therefore not observed. Between M′

and K′, the (
√

3 × √
3)R30◦ band also splits into three bands in the (3 × 3) phase. Only the

lowest band is occupied, and its energy is much lower than the corresponding (
√

3 × √
3)R30◦

band near the Fermi level. This energy shift accounts for the apparent gap opening in the spectra
around the (3×3) BZ boundary, as marked in figure 6. Despite the band splitting and apparent
gap over a portion of the BZ, the (3 × 3) surface remains metallic [17].
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4. Mechanism for the (3 × 3) response

With the photoemission results and band structure satisfactorily explained, we now turn to the
question of why the surface undergoes a (3 × 3) phase transition. The same LDA Hubbard
calculation [21] shows that the (

√
3 × √

3)R30◦ and (3 × 3) phases have nearly the same
energy, with a difference of just a few meV per Sn atom. This difference is about at the limit
of accuracy of the calculation, and it is difficult to tell which reconstruction actually has the
lower energy. Despite the extended Fermi edge as observed in the experiment, there is not an
exact nesting of the Fermi surface. Thus any electronic energy lowering caused by the lattice
distortion must be small, and this is in agreement with the LDA Hubbard calculation.

A standard test for a mechanism based on electron–phonon coupling is to compute the
response function. If the response function peaks strongly at a commensurate point in k-space,
the corresponding lattice distortion would be a likely candidate for a phase transition. The
Lindhard response function is given by

χ (q) =
∫
BZ

dk

(2π)2
nk − nk+q

Ek+q − Ek

(1)

where n denotes the state occupation. Figure 7 shows the calculated χ for the (
√

3 × √
3)R30◦

phase [10]. The calculation employs the band structure shown in figures 2 and 6, which have
been verified by our photoemission results. Thermal smearing effects have been ignored for
simplicity, and thus this is effectively a T = 0 calculation. This plot covers the most important
high-symmetry directions. The K points in the (

√
3 × √

3)R30◦ BZ correspond to zone centres
for the (3 × 3) reconstruction. A large peak at K would be an indication of a tendency for the
system to undergo a (3 × 3) Peierls distortion. The plot in figure 7 shows two peaks, but none
is at the K point.

The left panel of figure 8 is a two-dimensional plot of the response function using a
greyscale representation. This is to make certain that we do not miss any other strong peaks
in k-space. The dashed hexagon represents the first BZ of the (

√
3 × √

3)R30◦ phase, and the
corners are the K points. Again, high intensities at K points would indicate a strong (3 × 3)
response, but this is not the case. The pattern is rather diffuse, indicating poor or no nesting.

The fact that defects can induce the (3×3) phase transition locally at room temperature as
observed by STM [1–4, 6] is an important clue. The defects, being electron donors according
to STM studies, can cause an upward shift of the local Fermi level. Shown in the middle
and right panels of figure 8 are calculated response functions with the Fermi level shifted
upward by�EF = 25 and 50 meV, respectively. These are not very large shifts (compared to



Fermi surfaces and energy gaps in Sn/Ge(111) R11

Figure 8. Greyscale maps showing the calculated Lindhard response functions for the ideal
(
√

3 × √
3)R30◦ phase (left panel) and the same with the Fermi level shifted upward by 25 meV

(middle panel) and 50 meV (right panel) relative to the band. The dashed hexagons indicate the
(
√

3 × √
3)R30◦ BZ. The calculation assumes T = 0 K.

Figure 9. Greyscale maps showing the calculated Lindhard
response functions for the ideal (

√
3 × √

3)R30◦ phase at
T = 300 K with the Fermi level shifted upward by 50 meV.

kBT = 26 meV at room temperature), and yet the change in the response function is substantial.
As �EF increases, there is a rapid concentration of intensity near the K points, indicating a
(3 × 3) response. This high sensitivity of the response function to a shift in Fermi level is a
consequence of the low band dispersion along M/M′–K′ as seen in the lower panel of figure 6.
This is also responsible for the extended Fermi edge discussed above.

To assess the thermal smearing effects ignored so far, figure 9 shows the response function
for �EF = 50 meV calculated with the thermal population factor taken into account at
T = 300 K. As expected, the pattern is smoothed out, and the only features left are six
fuzzy intensity maxima centred on the K points. The fuzziness, or the width of each intensity
maximum, is related to the expected defect-induced (3 × 3) domain size in real space through
the uncertainty principle. From the results in figure 9, one can estimate that the domain size is
about a few atomic spacings, which is roughly what STM shows at room temperature.

The above discussion suggests that the basic mechanism for the phase transition is the
same as in traditional Peierls CDW materials. That is, electron–phonon coupling with pseudo-
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(√3×√3)R30° Fermi Surface

(3×3)

(√3×√3)R30°

Same Broadened by ± 20 meV
in Repeated (3×3) Zones

Figure 10. The left panel shows the calculated Fermi surface for the ideal (
√

3 × √
3)R30◦ phase

relative to the (
√

3 × √
3)R30◦ BZ (large hexagon) and the (3 × 3) BZ (small hexagon). The right

panel shows the same Fermi surface broadened by ±20 meV and folded according to the (3 × 3)
symmetry. The resulting broadened Fermi surface meshes well with the (3 × 3) BZ boundary.

Fermi-surface nesting caused by defect doping is the source of the lattice instability. This type
of instability is usually described in terms of phonon softening. That is, a phonon near the
zone boundary has a temperature-dependent frequency. The frequency lowers for decreasing
temperatures and becomes zero at the transition temperature. Below the transition temperature,
a static lattice distortion sets in and grows as the temperature decreases further. This soft-mode
behaviour has been verified by a recent density functional calculation of the phonon dispersion
curves of this system [22]. The actual behaviour of the system is somewhat more complicated
due to the defects. Instead of a simple, homogeneous phase transition over the entire surface,
STM shows, as the temperature is lowered, that the (3 × 3) regions pinned by the defects grow
and eventually overlap to form a fully developed (3 × 3) phase at low temperatures.

The concept of pseudo-Fermi-surface nesting is further illustrated in figure 10. Here, the
perfectly sharp Fermi surface on the left for the ideal (

√
3 × √

3)R30◦ surface is broadened
by ±20 meV and folded according to the (3 × 3) symmetry. The resulting ‘broadened Fermi
surface’ shown on the right matches pretty well the (3 × 3) BZ boundaries. This is related
to the observed extended Fermi edge mentioned above. It is important to recognize that a
small bandwidth (and a small group velocity) can make a system quite sensitive to doping
and thermal effects. Many-body effects also tend to be more important in the case of a
small bandwidth. However, the behaviour of the Sn/Ge system can be well explained without
resorting to complicated many-body effects.

5. Real-space response based on a tight-binding calculation

A simple extension of the same model and ideas allows us to evaluate the real-space response
of the system to a charged impurity. The results should be directly comparable to STM
observations of the charge distribution around a Ge defect, and this can be taken as an additional
test of the model. The starting point is a tight-binding model fit to the band structure shown
in figure 2 with two-body interactions extending to the sixth neighbours [10]. Our calculation
employs a two-dimensional N × N cluster of Sn atoms arranged in a hexagonal net. The
potential energy for the central atom is shifted slightly by�V = +0.001 eV to create an electron
deficiency, thus simulating the effect of a defect as an electron donor. The potential energy
shift adopted here is very small, because we wish to keep the system in the linear response
regime. The tight-binding Hamiltonian, with the impurity potential added, is diagonalized
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Figure 11. Left panel: calculated charge response to a donor impurity at the centre of a 41 × 41
cluster within a tight-binding model. The central impurity atom is marked by a star. Red (blue) is
used to indicate a positive (negative) charge, and neutral atoms are shown in white. The intensity
of the red or blue is an indication of the amount of excess charge. Right panel: the same except that
the excess positive and negative charges have been converted by a square-root function to compress
the intensity scale in order to show details.

to yield eigenvectors and eigenvalues. The resulting charge redistribution on the lattice is
calculated according to

Qm,n = −e
[∑

i

∣∣ψi
m,n

∣∣2

1 + exp
(
Ei/kBT

) − 1

]
(2)

where e is the electronic charge, m and n are site indices (each between 1 and N ), i is the
state index (between 1 and 2N2, where the factor of 2 comes from electron spin), E is the
state energy (with the Fermi level at zero), and ψ is the normalized eigenvector. The absolute
square of the eigenvector yields the probability, and the denominator in equation (2) comes
from the Fermi–Dirac distribution function. A positive (negative)Q corresponds to depletion
(accumulation) of electronic charge.

The results for N = 41 and T = 300 K are shown in the left panel of figure 11, which
covers only a portion of the lattice near the central impurity atom. Each circle represents an
atom, and a star marks the central atom. Red (blue) is used to indicate a positive (negative)
charge, and neutral atoms are shown in white. The intensity of the red or blue is an indication
of the amount of the excess charge. The response to the impurity is fairly local, and we have
verified that the cluster is large enough to avoid boundary effects. The spatial range of the
response increases at lower temperatures to a fairly long range (results not shown). This is in
qualitative agreement with STM observations that the effective range of the Ge defect increases
at low temperatures.

The main features of the charge response include six blue atoms in the first shell
surrounding the central atom and six red atoms in the next shell. Beyond that, the charge
response decays rapidly. The results look very similar to what STM shows at room temperature;
namely, the local response is (3 × 3). Referring back to the atomic structure model in figure 1,
the negative atoms form a hexagonal net, while the positive atoms, twice as many, form a
honeycomb pattern. The honeycomb pattern consists of hexagonal rings, each surrounding a
negative atom. In figure 11, the blue atoms in the first shell form a hexagonal ring. This is the
basic unit of a (3×3) reconstruction. Compared with the ideal pure (3×3) phase, the phase of
the CDW is reversed. That is, instead of a red hexagonal ring, we have here a blue hexagonal
ring surrounding an impurity atom. This phase reversal has been discussed at length in the
literature, and is sometimes observed in certain domains at low temperatures [6].
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One wonders, since the phase is reversed right next to the defect, how the phase can
become correct at low temperatures when large (3 × 3) domains are formed. An explanation
offered was that defect–defect interaction at low temperatures results in an interference pattern
that exhibits the correct (3 × 3) phase. This effect is enhanced by a subtle transition at low
temperatures whereby the positions of Ge defects become spatially correlated. At intermediate
temperatures, the surface structure is rather complicated, as one can imagine. A detailed
analysis of the surface pattern based on STM can be found in the literature [6].

In the present calculation, we wish to examine the phase of the charge oscillations at larger
distances (Friedel oscillations). These oscillations die away very quickly, and in order to see
the effect more clearly, we present in the right panel of figure 11 the signed square root of
the charge, sgn(Q)

√|Q|, with a constant background subtracted. The square-root function
compresses the intensity scale, and thus weak features become more visible. One can see that
the six first neighbours to the central impurity atom forming a blue hexagon, when amplified
three times, map onto another six blue atoms. Each of these blue atoms is surrounded by six
pink atoms forming a hexagonal ring. Each of these blue atoms is also accompanied by two
other blue atoms further out to form a hexagonal net configuration. Thus, locally, we have a
(3 × 3) configuration with the correct phase.

The tight-binding model shows that the real-space response is characterized by a (3 × 3)
configuration in agreement with the reciprocal-space argument in terms of a response function.
This is not surprising because both are quantum mechanical calculations based on a linear
response of the system with the same starting band structure. One question is whether or
not we can carry the model further. For example, in the tight-binding model, one might
be tempted to increase the impurity potential to something more representative of the real
system. This is easy to do, and one can also incorporate randomly distributed or correlated
impurities in the model. We have tried these ideas at various temperatures and the results
are complex and not particularly illuminating. One problem is that the system response is
necessarily nonlinear. The band structure changes as the system distorts, and this change is
not in the present model. Linear response theories allow us to determine the initial trend,
but not the detailed system evolution at later stages. What we have achieved here is to
demonstrate the initial trend of the system toward forming a (3 × 3) configuration with
defect doping.

6. Discussion

6.1. Dynamic effects

Our model is successful thus far in explaining the results from angle-resolved photoemission
and the essential physics of the system. With simplicity in mind, we have not worried too
much about the dynamic behaviour, or possible time fluctuation of the system. Of course, all
systems exhibit lattice vibrations. These vibrations, or phonons, can give rise to a temperature-
dependent spectral broadening, as has been observed in numerous systems. In our model, we
have assumed that these dynamic effects are just minor details with no major consequences.
The dynamic fluctuation model, on the other hand, assumes that lattice fluctuation is the key
feature. This concept has received considerable attention, and it is useful to address this issue
in some detail. In reading through the literature, it is actually unclear exactly what dynamic
fluctuation means in some cases. Some authors seem to take lattice vibrations, or the usual
phonons, as a form of dynamic fluctuation. This is not our preference, as there is no reason to
introduce new terminology for an old concept. At some level, the ongoing controversy seems
to be partly a matter of semantics.
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Assuming that the dynamic fluctuation model is correct, namely, the system at any instant
is in a (3 × 3) geometry at room temperature, the motion of each Sn atom cannot be a simple
up–down harmonic motion. Rather, it is probably more like quantum tunnelling between two
positions. One of the two positions is up, with the atom negatively charged, and the other
is down, with the atom positively charged. The probability for the atom to be in the down
position must be twice as large as that for the up position in order to yield a statistically uniform
appearance for the three atoms in a unit cell as observed by STM. Furthermore, the motions of
neighbouring Sn atoms are correlated such that at a given instant, the (3 × 3) configuration is
preserved. When an up atom changes into a down atom, the phase of the (3 × 3) wave shifts.
To accomplish this correlated motion, one possible scenario is a sliding CDW [23]. That is, a
CDW travels within the plane of the surface, and thus the (3×3) phase for each Sn atom varies
periodically and averages to zero. Sliding charge-density waves are well known in traditional
CDW materials, but mostly for incommensurate phases. Such motions are much harder for
commensurate waves. Defect pinning of CDW is also a well known phenomenon. Usually,
this is a temperature-dependent effect—namely, a CDW becomes depinned and moves above
a certain temperature. The case of Ge/Si is different, however. The temperature dependence
seems to be through the growth of statically pinned areas. To make the sliding CDW scenario
work, one would need a description or explanation for the interaction of a sliding CDW with
defects in this case, and, in particular, for boundary effects where a dynamically fluctuating
domain meets a statically pinned area.

One interesting question is that of the frequency spectrum of the dynamic fluctuation. Is
there a well defined frequency, such as in the case of a sliding CDW with a constant velocity?
Or is this broad band? If there is a well defined frequency, perhaps it is possible to detect it
through inelastic scattering by electrons, photons, or neutrons. As far as we know, no such
measurements have been made. There may be other scenarios for dynamic fluctuation, such
as the dynamic stripes in high-temperature superconductors, but we will not speculate any
further. Our results can be explained without dynamic fluctuation.

6.2. Photoemission from the Sn core level

A key question in this debate is that of whether or not the Sn atoms occupy equivalent sites
at room temperature. In the simplified picture of the (

√
3 × √

3)R30◦ surface, all Sn atoms
are equivalent (apart from the usual lattice vibrations). This is not so within the dynamic
fluctuation model at any given moment in time. Core-level spectroscopy, which yields a
statistical sampling of all instantaneous atomic configurations, would seem to be a good test. A
true (

√
3 × √

3)R30◦ lattice, with all equilibrium lattice sites being equivalent, would give rise
to a single core-level component, which may be broadened by lattice vibrations. By contrast,
a dynamically fluctuating (3 × 3) phase, with a time-averaged (

√
3 × √

3)R30◦ structure,
would give rise to two components due to the charge transfer or inequivalent atomic bonding
geometries for the up and down atoms in the (3 × 3) phase. However, the problem is not
clear-cut because the surface at room temperature is actually in a mixed phase due to defects
and local pinning. A simple analysis based on STM estimates of the defect-pinned area
reveals that the core-level lineshape can be fairly complicated even for a static lattice. The
experimentally observed lineshapes are indeed complicated. Both the mixed-phase model [24]
and the dynamic fluctuation model [17] have been used to explain the results with partial
success.

Figure 12 shows core-level spectra taken at both room temperature and low temperature for
a Sn coverage of 0.35 ML [17]. The lineshapes are complicated. Let us focus on the lineshape
at low temperature first. There are two major peaks seen by inspection (C1 and C2), but
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Figure 12. Sn 4d core-level spectra taken from the (
√

3 × √
3)R30◦ and (3 × 3) surfaces for

0.35 ML Sn coverage (from [17]). The circles are data points and the curves are results of a fit.
The components are labelled C1, C2, and C3, and the bottom curve represents the residue of the
fit.

curve fitting suggests that there are definitely more peaks (C3). Since these peaks are not well
resolved, a detailed quantitative analysis is difficult. One problem, though, is the intensity ratio
between the two major peaks (C1 and C2) at low temperatures. Presumably the surface is in a
fairly pure (3 × 3) phase, and two components corresponding to the positively and negatively
charged Sn atoms are expected with an intensity ratio of 2 to 1. The component corresponding
to the positively charged atoms should have a larger binding energy, because it would take more
energy to remove an electron from a positively charged atom. The observed intensity ratio
varies from experiment to experiment. This is partly due to uncertainties in coverage, and partly
due to photoelectron diffraction effects. A photoelectron leaving the emitting atom reaches
the detector via many possible paths, including scattering by nearby atoms. Interference can
give rise to complicated intensity variations as a function of emission direction and energy.
The physical situation is like a point emitter sitting on a three-dimensional diffraction grating
(the substrate crystal lattice). Such diffraction effects must be carefully analysed in order
to avoid large errors. Ideally, the intensity ratio should be evaluated using angle-integrated
photoemission spectra averaged over a wide range of photon energy. In practice, this averaging
is almost never carried out (fully).

The spectra in figure 12, taken with an angle-resolved geometry and with a carefully
calibrated Sn coverage, show a C2:C1 intensity ratio of about 1:1.5 between the high- and low-
binding-energy components at low temperatures. This is very different from the expected 2:1
ratio, and the difference seems to be well beyond the usual uncertainties arising from diffraction
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effects. One explanation offered was that final-state screening effects are so different for the two
types of atoms as to reverse the binding energy order [17]. Thus the more intense component,
at a lower binding energy, actually corresponds to the positive (down) atoms. This would be an
unusual situation because numerous core-level studies have established a correlation between
charge transfer and core-level shifts, and few cases have been reported to have the binding
energy shift reversed due to final-state screening. A calculation would be useful to verify
this case.

The room temperature lineshape shown in figure 12 is very much smeared out, but it is
clearly made up of multiple components. A three-component fit is shown, but there could be
many more components. Defects are known to have a relatively long-range effect, and the
broad lineshape is consistent with a mixed phase with multiple shifts at room temperature.
Thermal broadening may be particularly strong in this case because of a partially softened
phonon mode [22]. The broad lineshape is also consistent with the dynamic fluctuation model.
By visual inspection, the room temperature spectrum may be interpreted as just a broadened
version of the low-temperature spectrum [15, 17, 22].

The three-component analysis shown in figure 12 represents the simplest assumption that
remains reasonable for a satisfactory fit. However, the spectra can surely be fitted with more
components and, with uncertainties in peak assignments, it becomes extremely difficult to
use the information as a basis for definitive statements. Core-level spectroscopy is a very
powerful technique, but its utility is limited in cases with multiple unresolved components as
in the present case. The experimental core-level lineshape of Sn/Ge is still being debated. No
single model offers a completely satisfactory, quantitative, and definitive explanation for all
details.

6.3. Many-body effects and magnetic ground states

As mentioned earlier, many-body effects could be important. A simple test is to compare
the bandwidth with the lifetime broadening of the quasiparticle. If the bandwidth is small in
comparison, the band picture loses its significance, because the quasiparticle does not live long
enough to be described in terms of wave propagation in a periodic potential. An equivalent
argument is that the particle has such a short mean free path that it is effectively localized on
one site. Our photoemission results clearly show band dispersion. It is relatively small, but
not too small compared with the peak width, and thus band structure should remain a pretty
good description. The (3 × 3) case is a little worse, because the bandwidth becomes smaller
after band splitting. Another issue is the possibility of a magnetic ground state as suggested
by many-body calculations with suitable choices of parameters [10]. A magnetic ground state
is possible when the spin degrees of freedom are coupled to the orbital or lattice degrees of
freedom in the calculation. Yet other possibilities exist [18]. Since available calculations are
not based on first-principles or ab initio methods, it is difficult to assess the importance of
these many-body effects. The good agreement between theory and experiment as discussed
above in our analysis would suggest that the phase transition does not involve complicated
electron correlation effects such as correlation-induced metal–insulator transitions. Can one
detect magnetic effects in a surface layer? Theoretically, it is possible, but in practice, it is a
tough experiment.

6.4. Diffraction determination of structure

X-ray diffraction is usually the method of choice for structural determination. The method is
robust with few uncertainties for bulk single crystals, but this is not necessarily so for surfaces.
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Because of the possibility of multilayer relaxation to a large depth and layer-dependent Debye–
Waller factors, the analysis can involve a large number of parameters. X-ray diffraction has
been applied to Sn/Ge by several groups [5, 16, 25], but the results remain controversial.
Recent studies have yielded completely different conclusions. In two cases, the conclusion
is that the simple model without dynamic fluctuation represents the correct structure [5, 25].
In another study [16], the dynamic fluctuation model is shown to be the correct model. In
other words, the surface is corrugated at both room temperature and low temperature. In this
latter analysis involving a fairly large data set, horizontal and vertical atomic displacements
up to the third bilayer of the substrate are allowed in the structural optimization, and the total
number of independent structural parameters is 30. The χ2-value is 1.48 for the best fit for the
(3 × 3) phase and 1.96 for a fit to the (

√
3 × √

3)R30◦ phase assuming a flat Sn layer with no
corrugation (but with a Debye–Waller factor to account for lattice vibrations). The best fit for
(3 × 3), however, yields a structure involving two Sn atoms moved up and one Sn atom moved
down. This is opposite to what has been reported in the literature, namely, two atoms down
and one atom up. Forcing the Sn atoms into this configuration in the x-ray analysis results in
a larger value of χ2 of 2.24.

A photoelectron diffraction analysis of the Sn core level has been performed for the (3×3)
phase [26]. A two-component analysis assuming that the lower-binding-energy component
corresponds to the positive Sn atoms results in a corrugated Sn layer with the negative atom in
a unit cell moved up relative to the two positive atoms. This is opposite to the x-ray analysis
result just mentioned. However, it is hard to say whether a two-component fit represents a
good approximation in this case.

This is the current state of affairs, and the disagreements remain puzzling. Note that the
diffraction spots from (

√
3 × √

3)R30◦ form a subset of the (3 × 3) spots. As the system
temperature goes up, the distinct (3 × 3) spots become weaker and broader according to the
same x-ray study. The spots actually persist to temperatures significantly higher than the
transition temperature. This has been interpreted within the dynamic fluctuation model in
terms of a (3 × 3) order that is becoming increasingly short ranged [16]. On the other hand,
the persistence of a weak (3 × 3) diffraction pattern is also consistent with the presence of
(3×3) patches pinned by defects at room temperature. Thus, the diffraction intensity variation
can be equally well explained by the mixed-phase model without dynamic fluctuation. Up to
now, diffraction studies have not provided the distinction needed to separate out the different
models.

7. Summary and conclusions

1/3 ML of Sn on a Ge(111) surface is a seemingly simple adsorbate system, and yet it exhibits
an interesting CDW phase transition with features that are characteristic of complex systems.
A few percent of Ge defects in the Sn layer leads to a complex pattern of mixed phases over
a wide temperature range. Angle-resolved photoemission results for the room temperature
(
√

3 × √
3)R30◦ phase are complex, and can be best explained in terms of a linear combination

of an uncorrugated (
√

3 × √
3)R30◦ phase and a corrugated (3 × 3) CDW phase. The band

structure for the (
√

3 × √
3)R30◦ phase, extracted from difference spectra, is in excellent

agreement with LDA calculations assuming an uncorrugated surface. The experimental band
structure of the (3 × 3) phase is in good agreement with an LDA Hubbard calculation. A
portion of the (

√
3 × √

3)R30◦ band lies very close to the Fermi level around the (3 × 3)
BZ boundary. This, with broadening, leads to an extended Fermi edge in the photoemission
spectra. The transition to (3 × 3) causes band splitting, thus suppressing emission near the
Fermi level, but the system remains in a metallic state.
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There is no Fermi-level nesting for the ideal (
√

3 × √
3)R30◦ phase. However, defect

doping can lead to a strong local (3 × 3) response according to a calculated response function.
This sensitivity is due to a small overall bandwidth and a very small group velocity of the
band near the Fermi level. Defect-induced pseudo-Fermi-surface nesting is believed to be the
driving mechanism for the phase transition, which is in agreement with STM studies that show
the central role played by defects. Nesting results in a lowering of the electronic energy, and
electron–phonon coupling leads to phonon softening and eventually a static distortion as in
the usual Peierls transitions. A similar linear response model involving a tight-binding cluster
calculation using the same band structure is employed to evaluate the real-space charge response
to a defect. The results are very similar to what STM reveals. The issue of phase reversal—
namely, the spatial arrangement of the positively and negatively charged Sn adatoms—is
clarified.

Is there a phase transition for a defect-free surface, assuming that such a surface can
be prepared? We do not know. If there is one, it is likely that the transition temperature
would be much lower. This would be an interesting experiment to try. Although we do not
know for certain, the Ge defects on the surface, at a concentration of a few percent, appear
to be intrinsic and may represent a quasi-equilibrium property of the system for the sample
preparation temperature needed for annealing. Perhaps other routes for surface preparation
involving lower temperatures can lead to a lower defect density, or maybe there are ways to
increase the surface defect density. Such experiments would be helpful in establishing the
connection between the CDW transition and the defect density. Surfaces prepared with Sn
and other dopants might also offer useful information, but the added complexity can be a
problem [27].

An alternative interpretation of the photoemission results is the dynamic fluctuation model,
even though it is not quite consistent with the analysis based on difference spectra. This model
assumes that the surface at room temperature remains corrugated in a (3 × 3) phase at any
given instant. Fluctuation leads to time averaging and an impression of a (

√
3 × √

3)R30◦

surface. Possible scenarios for such fluctuation are discussed. Core-level photoemission,
x-ray diffraction, and photoelectron diffraction have been employed as a means for statistical
sampling of the instantaneous structure of this system. However, the results are sometimes
inconsistent and largely inconclusive, partly due to the intrinsic complexity of the system.
Other explanations based on many-body effects have been proposed, but our photoemission
results suggest that these are unlikely to play an important role in the CDW transition.
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